
International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 86
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Image Compression in MATLAB
Tamanna Gaur, Aakriti Khanna

Abstract— In recent years, the development and demand of multimedia product grows increasingly fast, contributing to insufficient
bandwidth of network and storage of memory device. Therefore, the theory of data compression becomes more and more significant for
reducing the data redundancy to save more hardware space and transmission bandwidth. In computer science and information theory, data
compression or source coding is the process of encoding information using fewer bits or other information-bearing units than an un-
encoded representation. Compression is useful because it helps reduce the consumption of expensive resources such as hard disk space
or transmission bandwidth.

Index Terms— Compression, MATLAB modeling, bandwidth encoded, redundancy.

——————————  ——————————

1 INTRODUCTION

mage compression is an application of data compression
that encodes the original image with few bits. The objective
of image compression is to reduce the redundancy of the

image and to store or transmit data in an efficient form. Fig 1.1
shows the block diagram of the general image storage system.

Image compression means reducing the size of the image or
video file without downgrading the quality of the file to be
perceived as an unsatisfactory image . For images and videos,
the reduction in the file size is achieved by removing the re-
dundancies or repetitions involved in the image or video file
and preserving as much original information as possible. In
this project, we have used Matlab to demonstrate image com-
pression of a 640 X 480 24-bit per pixel JPEG color image to
work on various aspects of image processing such as reading
and displaying the images using imread and imshow com-
mand. Converting the given image YCbCr color space, sub-
sampling and up-sampling using linear interpolation and row
or column replication and converting the image into RGB for-
mat and measuring the MSE values between the original and
reconstructed images. All these mentioned aspects are crucial
when it comes to image compression as these are the basic
operations that would be performed on a given image which
is to be compressed.

2 PROCEDURE SECTION

2.1 Read and display the image in MATLAB along with

its R, G and B bands
This is the basic operation whose purpose is to read the image
file and display the same. We have made use of ‘imread’
command to read the original image Landscape.jpg and ‘im-
show’ command to display the same image. Also the use of
‘subimage’ command has been made to depict the scale or axis
(X and Y) for the image. In order to display the R, G and B
components separately; for instance, to display the Red com-
ponent, we make the G and B components zero in the original
image (:,:,2:3) = 0 such that only the Red component of the im-
age is displayed. The same procedure is then employed in a
similar fashion to achieve the display of Green and Blue com-
ponents respectively.

2.2 Conversion from RGB to YCbCr and displaying the
individual Y, Cb, Cr components
‘rgb2ycbcr’ is the command used in Matlab to convert the
original image in RGB format to its YCbCr form. In order to
show the ‘Y’ component of the image, we have made the ‘Cb’
and ‘Cr’ components equal to zero such that the Matlab com-
mand being YCbCr(:,:,2:3) = 0 thereby displaying only the ‘Y’
component out of the three components. Similarly, the ‘Cb’
and ‘Cr’ components are individually displayed in the same
manner by making the required changes to the above compo-
nents
2.3 Sub-sampling the image using 4:2:0 and displaying
both ‘Cb’ and ‘Cr’ bands:
Subsampling is basically a process of removing the pixels in
an image by reducing the size of the image. The chroma sam-
ples from every even numbered rows and columns are re-
moved by the Matlab code. Thus in this process, the ‘Cb’ and
‘Cr’ components with values equal to zero are discarded or
ignored and only the remaining values of the ‘Cb’ and ‘Cr’
components with a non-zero value are displayed. This result-
ing image is the sub-sampled image with individual ‘Cb and
‘Cr’ bands respectively.
2.4 Up-sampling using Linear Interpolation and displaying
the ‘Cb’ and ‘Cr’ bands:

I

————————————————
• Tamanna Gaur is currently pursuing masters degree program in electron-

ics and instrumentation engineering in YMCA University OF Science and
Technology, India, PH-9711225827. E-mail:tamanna.tg@gmail.com

• Aakriti Khanna is currently pursuing masters degree program in electron-
ics and instrumentation engineering in YMCA University OF Science and
Technology, India, PH-9718873339. E-mail: aaki0502@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 87
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Each missing pixel value (‘Cb’ and ‘Cr’ component) in an odd
numbered row is calculated as the average of its adjacent two
pixels in the same row; whereas in an even numbered row,
each missing pixel value is calculated as the average of the
pixels in the same column from the two adjacent rows. So
now, due to this process, we cannot calculate the average of
the last row and the last column. In order to include this into
the calculation, it is achieved by copying the second last row
and the second last column into the last row and the last col-
umn respectively. We have used the Matlab command ‘sub-
image’ used to display the up-sampled ‘Cb’ and ‘Cr’ bands.
2.5 Up-sampling using Row-Column Replication and dis-
playing the ‘Cb’ and ‘Cr’ bands:
For odd-numbered rows, the missing pixels are filled up by
copying the pixels from the previous columns. Then, in order
to complete the even-numbered rows, the odd-numbered
rows are added to the subsequent even-numbered rows. In
this process, the numbers of rows are doubled. The ‘Cb’ and
‘Cr’ bands are displayed using the ‘subimage’ command in
Matlab

2.6 Conversion of the image into RGB format:
We made use of the Matlab command ‘ycbcr2rgb’ to convert
the linearly interpolated and row-column replicated up-
sampled (YCbCr) images into RGB format.
sampled (YCbCr) images into RGB format.

Fig 1.2 Conversion of image into RGB

MATLAB SIMULATION TOOL
The Image Processing Toolbox in Matlab is a collection of
functions that extend the capabilities of the MATLAB’s nu-
meric computing environment. The toolbox supports a wide
range of image processing operations, including:

• Geometric operations
• Neighborhood and block operations
• Linear filtering and filter design
• Transforms
• Image analysis and enhancement
• Binary image operations
• Region of interest operations

• MATLAB stores the read image in 3 x 2D
matrix form. To read an image
 imfinfo('landscape.jpg')
 RGBImage = im-
read(‘landscape.jpg’,’jpg’);
 imshow(RGBImage);
 size(RGBImage)

• To show the picture.
 figure() and subplot()

• To convert an image
 YCbCr_Image= rgb2ycbcr (RGBImage);
 Gray_Image = rgb2gray (RGBImage);

3 MATLAB PROGRAM CODE

% Name: Tamanna Gaur
% email: tamanna.tg@gmail.com

%% Project Cleanup
clc
clear all
close all

%% PROBLEM 1 - Read and display the image using Matlab

%Project location to read the image
Input = imread('C:\Users\sony\Desktop\Mini
Project\Assignment 1\Landscape.jpg','jpg');
figure(1)
subimage(Inputtitle('Original RGB image')

%% PROBLEM 2 - Display each band (Red, Green and Blue) of
the image file

figure(2)
Red = Input;
Red(:,:,[2 3]) = 0; Green = Input;
Green(:,:,[1 3]) = 0; Blue = Input;
Blue(:,:,[1 2]) = 0
% Display the original image and R,G & B Band Seperately
subplot(2,2,1)
subimage(Input);
title('Original RGB Image');

subplot(2,2,2)
subimage(Red);
title('Red Component');

subplot(2,2,3)
subimage(Green);
title('Green Component');

subplot(2,2,4)
subimage(Blue);

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 88
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

title('Blue Component');

%% PROBLEM 3: Convert the image into YCbCr color space

YCbCr = rgb2ycbcr(Input
figure(3)
colormap(gray
subplot(2,2,1)
subimage(YCbCr);
title('YCbCr Image');

%% PROBLEM 4: Display each band separately (Y, Cb and Cr
bands)

subplot(2,2,2)
Y = YCbCr(:,:,1
subimage(Y);
title('Y Component');

subplot(2,2,3)
Cb = YCbCr(:,:,2);
subimage(Cb);
title('Cb Component');

subplot(2,2,4
Cr = YCbCr(:,:,3);
subimage(Cr);
title('Cr Component');

%% PROBLEM 5: Subsample Cb and Cr bands using 4:2:0 and
display them

YCbCr2 = YCbCr;
YCbCr2(1:2:479,2:2:640,2:3) = 0;

YCbCr2(2:2:480,:,2:3) = 0;

figure(4)
colormap(gray);

SubCb(:,:) = YCbCr2(1:2:480,1:2:640,2);
SubCr(:,:) = YCbCr2(1:2:480,1:2:640,3);

subplot(1,2,1)
subimage(SubCb(:,:));
title('Cb component after 4:2:0 Subsampling');

subplot(1,2,2)
subimage(SubCr(:,:));
title('Cr component after 4:2:0 Subsampling');

%% PROBLEM 6.1: Upsampling using Linear Interpolation

% To fill blank row between every Cb, Cr 4:2:0 subsampled row
% To fill blank column between every Cb, Cr 4:2:0 subsampled
column

YCbCr3(:,:,1) = YCbCr2(:,:,1);
YCbCr3(1:2:479,1:2:639,2) = SubCb(:,:);
YCbCr3(1:2:479,1:2:639,3) = SubCr(:,:);

YCbCr3(1:2:479,2:2:638,2:3) = (double(YCbCr3(1:2:479,1:2:637,2:3))
+ double(YCbCr3(1:2:479,3:2:639,2:3)))/2;

YCbCr3(1:2:479,640,2:3) = YCbCr3(1:2:479,639,2:3);

YCbCr3(2:2:478,:,2:3) = (double(YCbCr3(1:2:477,:,2:3)) +
double(YCbCr3(3:2:479,:,2:3)))/2;

YCbCr3(480,:,2:3) = YCbCr3(479,:,2:3);

% Display the upsampled Cb and Cr components
figure(5)
subplot(1,2,1)
subimage(YCbCr3(:,:,2));
title('Cb Upsampling - Linear Interpolation');

subplot(1,2,2)
subimage(YCbCr3(:,:,3));
title('Cr Upsampling - Linear Interpolation');

%% PROBLEM 6.2: Simple Row or Column Replication

YCbCr4 = YCbCr2;

YCbCr4(1:2:479,2:2:640,2:3) = YCbCr4(1:2:479,1:2:639,2:3);

YCbCr4(2:2:480,:,2:3) = YCbCr4(1:2:479,:,2:3);

% Display the upsampled Cb and Cr components
figure(6)
subplot(1,2,1)
subimage(YCbCr4(:,:,2));
title('Cb Upsampling - Row or Column Replication');

subplot(1,2,2)
subimage(YCbCr4(:,:,3));
title('Cr Upsampling - Row or Column Replication');

%% PROBLEM 7: Convert the images to RGB format

Input2 = ycbcr2rgb(YCbCr3);
Input3 = ycbcr2rgb(YCbCr4);

%% PROBLEM 8: Display the original and reconstructed image

figure(7)

subplot(2,2,1)
subimage(Input);
title('Original Image')

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 89
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

subplot(2,2,2)
subimage(Input2);
title('Upsampled by Linear Interpolation')

subplot(2,2,3)
subimage(Input3);
title('Upsampled by Row - Column Replication')

%% PROBLEM 10: Calculate MSE between the original and re-
constructed images

double MSECB
double MSECR;
MSECB = 0;
MSECR = 0;

% To calculate the value in both the summations in the formula
for row = 1:1:480
 for col = 1:1:640
 MSECB = MSECB + (double(YCbCr3(row,col,2)) -
double(YCbCr2(row,col,2))).^2;
 MSECR = MSECR + (double(YCbCr3(row,col,3)) -
double(YCbCr2(row,col,3))).^2;
 end
end

% Divide by N*M (480 * 640) and display
disp('MSE for Cb component is: ');
MSECB = MSECB / (640 * 480);
disp(MSECB);

disp('MSE for Cr component is: ');
MSECR = MSECR / (640 * 480);
disp(MSECR);
V Results
The following results were deduced:

Below is the original RGB image along with its respec-
tive Red Green and Blue components.

Figure 1.3: Original image and its individual R, G and B bands

Figure 1.4: YCbCr image and its individual Y, Cb and Cr bands

There are two luminance samples for every Cb and Cr sample in
4:2:0 YCbCr but, there are no chrominance samples in alternative
rows and columns.
Also a noticeable change is that the matrix size of the 4:2:0 sub-
sampled Cb and Cr components is diminished by a factor of al-
most half i.e. to 320X280 compared to the individual Cb and Cr
components whose matrix size is 640X480.
Hence a compression ratio of 2:1 is achieved in this process.

Figure 1.5: Cb and Cr components after 4:2:0 subsampling

Below are the up-sampled images of the individual Cb and Cr
components using the linear interpolation method for Upsam-
pling.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 90
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 1.6: Cb and Cr upsampling using Linear Interpolation
method

Following are the up-sampled images of the individual
Cb and Cr components using row-column replication
method of subsampling.

Figure 1.7: Cb and Cr upsampling using Row-Column replica-
tion method

Below are the reconstructed images (images restored from
YCbCr) for Linear Interpolation and Row-Column replication
respectively besides the original image.
Overall, the reconstructed image using Linear Interpolation has
more contrast (the image is darker) compared to the image using
Row-Column replication.
The areas like the vegetation (green shrubs/green color) is darker
in the linearly interpolated image as compared to the row-column
replicated image. The green colored stretch in the landscape at the
top of the image and the golden-yellow colored water at the
source of the waterfall is more dominant in the linearly interpo-
lated image.

Figure 1.8: Reconstructed images using Linear Interpolation and
Row-Column Replication

Mean squared Error (MSE) values
The Mean Squared Error (MSE) calculation between the original
and the reconstructed image for the Cb and the Cr component in
Matlab is found to be as follows:
MSE value for the Cr component is 11783
MSE value for the Cb component is 13746

4 CONCLUSION
The DCT-based image compression such as JPEG performs very
well at moderate bit rates; however, at higher compression ratio,
the quality of the image degrades because of the artifacts resulting
from the block-based DCT scheme. 5
However, the current data compression methods might be far
away from the ultimate limits. Interesting issues like obtaining
accurate models of images, optimal representations of such mod-
els, and rapidly computing such optimal representations are the
grand challenges facing the data compression community. Image
coding based on models of human perception, scalability, robust-
ness, error resilience, and complexity are a few of the many chal-
lenges in image coding to be fully resolved and may affect image
data compression performance in the years to come.
In this project, we have conducted a few operations on a 640X480
24 bit/pixel JPEG color image using Matlab. The operations such
as converting the image into YCbCr color space, sub-sampling
using 4:2:0 and up-sampling using linear interpolation and row-
column replication and converting the image into RGB format.
However, the main focus of the project involved sub-sampling of
the image using 4:2:0 and its reconstruction using linear interpola-
tion and row-column replication methods. The 4:2:0 sub-sampling
operation yields a compression ratio of 2:1. From viewing the
reconstructed image and the original image, we can infer that the
up-sampling operations have successfully reconstructed the orig-
inal image.

ACKNOWLEDGMENT
I would like to take this opportunity to express my profound
gratitude and deep regard to my project guide Dr. Anju Gupta
for their exemplary guidance, valuable feedback and constant
encouragement throughout the duration of project. Their val-
uable suggestions were of immense help in completing this
project.

I would also like to give my sincere gratitude to all my friends
and colleagues especially Ms.Aakriti Khanna who filled in the
survey, without this the research work would be incomplete.

REFERENCES
[1] S. Kumar, “Topic 1: Multimedia Communication Fundamen-

tals”
[2] Haines, Richard F.; Chuang, Sherry L. (1 July 1992). The ef-

fects of video compression on acceptability of images for
monitoring life sciences experiments (Technical re-
port). NASA. NASA-TP-3239, A-92040, NAS 1.60:3239. Re-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 91
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

trieved 13 March 2016. The JPEG still-image-compression le-
vels, even with the large range of 5:1 to 120:1 in this study,
yielded equally high levels of acceptability

[3] JPEG File Layout and Format
[4] N. Ahmed, T. Natarajan, and K.R. Rao, "Discrete Cosine

Transform", IEEE Transactions on Computers, January, 2014,
pp. 90-93.

[5] Burt, P.; Adelson, E. (1 April 1983). "The Laplacian Pyramid
as a Compact Image Code". IEEE Transactions on Communi-
cations. 31 (4): 532–540. doi:10.1109/TCOM.2013.

[6] S. C. Tai, Y. G. Wu, and C. W. Lin, "An adaptive 3-D discrete
cosine transform coder for medical image compression," IEEE
Trans. Inform. Tech. Biomed., vol. 4, pp. 259-263, 2000.

[7] Adaptive texture and color feature based col-
or image compression Neelamma K. Patil; Suresh F. Mur-
god; Lokesh Boregowda; V. R. Udupi Smart Structures and
Systems (ICSSS), 2013 IEEE International Conference on
Year:2013 Pages: 82 - 86, DOI: 10.1109/ICSSS.2013.6623006

[8] Liu Chien-Chih, Hang Hsueh-Ming, "Acceleration and Im-
plementation of JPEG 2000 Encoder on TI DSP platform" Im-
age Processing, 2007. ICIP 2007. IEEE International Confe-
rence on, Vo1. 3, pp. III-329-339, 2005

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
http://ieeexplore.ieee.org/document/6623006/
http://ieeexplore.ieee.org/document/6623006/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Neelamma%20K.%20Patil.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Suresh%20F.%20Murgod.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Suresh%20F.%20Murgod.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lokesh%20Boregowda.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20R.%20Udupi.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6601110
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6601110
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6601110
https://doi.org/10.1109/ICSSS.2013.6623006

	1 Introduction
	2 Procedure Section
	2.1 Read and display the image in MATLAB along with its R, G and B bands
	2.2 Conversion from RGB to YCbCr and displaying the individual Y, Cb, Cr components

	MATLAB SIMULATION TOOL
	Conclusion
	Acknowledgment
	References

